A General Framework for Consistent Estimation of Charge Transport Properties via Random Walks in Random Environments
نویسندگان
چکیده
A general framework is proposed for the study of the charge transport properties of materials via Random Walks in Random Environments (RWRE). The material of interest is modelled by a random environment and the charge carrier is modelled by a random walker. The framework combines a model for the fast generation of random environments that realistically mimic materials morphology with an algorithm for efficient estimation of key properties of the resulting random walk. The model of the environment makes use of tools from spatial statistics and the theory of random geometric graphs. More precisely, the disordered medium is represented by a random spatial graph with directed edge weights, where the edge weights represent the transition rates of a Markov Jump Process (MJP) modelling the motion of the random walker. This MJP is a multiscale stochastic process. In the long term, it explores all vertices of the random graph model. In the short term, however, it becomes trapped in small subsets of the state space and makes many transitions in these small regions. This behaviour makes efficient estimation of velocity by Monte Carlo simulations a challenging task. Therefore, we use Aggregate Monte Carlo (AMC), introduced in Brereton et al. (2014), for estimating the velocity of a random walker as it passes through a realisation of the random environment. In this paper, we prove the strong consistency of the AMC velocity estimator and use this result to conduct a detailed case study, in which we describe the motion of holes in an amorphous mesophase of an organic semiconductor, dicyanovinyl-substituted oligothiophene (DCV4T). In particular, we analyse the effect of system size (i.e. number of molecules) on the velocity of single charge carriers.
منابع مشابه
A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملTransport Property Estimation of Non-Uniform Porous Media
In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...
متن کاملRandom walks in space time mixing environments
We prove that random walks in random environments, that are exponentially mixing in space and time, are almost surely diffusive, in the sense that their scaling limit is given by the Wiener measure. 1 The results Random walks in random environments are walks where the transition probabilities are themselves random variables (see [22, 23] for recent reviews of the literature). The environments c...
متن کاملRandom Walks in Random Environments
Random walks provide a simple conventional model to describe various transport processes, for example propagation of heat or diffusion of matter through a medium (for a general reference see, e.g., Hughes (1995)). However, in many practical cases the medium where the system evolves is highly irregular, due to factors such as defects, impurities, fluctuations etc. It is natural to model such irr...
متن کاملA Deterministic Multiple Key Space Scheme for Wireless Sensor Networks via Combinatorial Designs
The establishing of a pairwise key between two nodes for encryption in a wireless sensor network is a challenging issue. To do this, we propose a new deterministic key pre-distribution scheme which has modified the multiple key space scheme (MKSS). In the MKSS, the authors define two random parameters to make better resilience than existing schemes. Instead of a random selection of these parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 12 شماره
صفحات -
تاریخ انتشار 2014